Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging

Identifieur interne : 000232 ( Chine/Analysis ); précédent : 000231; suivant : 000233

Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging

Auteurs : RBID : Pascal:13-0180876

Descripteurs français

English descriptors

Abstract

Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient photoluminescence (PL) emissions can be tuned widely in the range of 525-625 nm by controlling the size and composition of the QDs with the PL quantum yields (QYs) of 15-30%. These highly luminescent ZAIS QDs are less toxic due to the absence of highly toxic cadmium, and can be versatilely modified by a DHLA-PEG-based ligand. Importantly, after being modified by tumor cell-specific targeting ligands (e.g., folate and RGD peptide), the PEGylated quaternary QDs show potential applications in tumor cell imaging as a promising alternative for Cd-based QDs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0180876

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging</title>
<author>
<name>DAWEI DENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, School af Life Science and Technology, China Pharmaceutical University</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210009</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIE CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, School af Life Science and Technology, China Pharmaceutical University</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210009</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LINGZHI QU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, School af Life Science and Technology, China Pharmaceutical University</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Achilefu, Samuel" uniqKey="Achilefu S">Samuel Achilefu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Radiology, School of Medicine, Waskington University</s1>
<s2>St. Louis, Missouri 63110</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>St. Louis, Missouri 63110</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUEQING GU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Biomedical Engineering, School af Life Science and Technology, China Pharmaceutical University</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Nanjing 210009</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0180876</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0180876 INIST</idno>
<idno type="RBID">Pascal:13-0180876</idno>
<idno type="wicri:Area/Main/Corpus">000E06</idno>
<idno type="wicri:Area/Main/Repository">000B81</idno>
<idno type="wicri:Area/Chine/Extraction">000232</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1463-9076</idno>
<title level="j" type="abbreviated">PCCP, Phys. chem. chem. phys. : (Print)</title>
<title level="j" type="main">PCCP. Physical chemistry chemical physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomedical application</term>
<term>Colloid</term>
<term>Imaging</term>
<term>Indium</term>
<term>Quantum dot</term>
<term>Silver</term>
<term>Sulfur</term>
<term>Tumor cell</term>
<term>Water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eau</term>
<term>Point quantique</term>
<term>Formation image</term>
<term>Argent</term>
<term>Indium</term>
<term>Soufre</term>
<term>Colloïde</term>
<term>Cellule tumorale</term>
<term>Application biomédicale</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Eau</term>
<term>Argent</term>
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient photoluminescence (PL) emissions can be tuned widely in the range of 525-625 nm by controlling the size and composition of the QDs with the PL quantum yields (QYs) of 15-30%. These highly luminescent ZAIS QDs are less toxic due to the absence of highly toxic cadmium, and can be versatilely modified by a DHLA-PEG-based ligand. Importantly, after being modified by tumor cell-specific targeting ligands (e.g., folate and RGD peptide), the PEGylated quaternary QDs show potential applications in tumor cell imaging as a promising alternative for Cd-based QDs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-9076</s0>
</fA01>
<fA03 i2="1">
<s0>PCCP, Phys. chem. chem. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DAWEI DENG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIE CAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LINGZHI QU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ACHILEFU (Samuel)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YUEQING GU</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Biomedical Engineering, School af Life Science and Technology, China Pharmaceutical University</s1>
<s2>Nanjing 210009</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Radiology, School of Medicine, Waskington University</s1>
<s2>St. Louis, Missouri 63110</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>5078-5083</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26801</s2>
<s5>354000173303420280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0180876</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>PCCP. Physical chemistry chemical physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient photoluminescence (PL) emissions can be tuned widely in the range of 525-625 nm by controlling the size and composition of the QDs with the PL quantum yields (QYs) of 15-30%. These highly luminescent ZAIS QDs are less toxic due to the absence of highly toxic cadmium, and can be versatilely modified by a DHLA-PEG-based ligand. Importantly, after being modified by tumor cell-specific targeting ligands (e.g., folate and RGD peptide), the PEGylated quaternary QDs show potential applications in tumor cell imaging as a promising alternative for Cd-based QDs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Eau</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Water</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Agua</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Formation image</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Imaging</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Formación imagen</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Plata</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Soufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sulfur</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Azufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Colloïde</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Colloid</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Coloide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cellule tumorale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tumor cell</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Célula tumoral</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Application biomédicale</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Biomedical application</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0180876
   |texte=   Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024